Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Identification of novel single amino acid changes that result in hyperactivation of the unique GTPase, Rheb, in fission yeast.

Identifieur interne : 001842 ( Main/Exploration ); précédent : 001841; suivant : 001843

Identification of novel single amino acid changes that result in hyperactivation of the unique GTPase, Rheb, in fission yeast.

Auteurs : Jun Urano [États-Unis] ; Melissa J. Comiso ; Lea Guo ; Paul-Joseph Aspuria ; Roman Deniskin ; Angel P. Tabancay ; Juran Kato-Stankiewicz ; Fuyuhiko Tamanoi

Source :

RBID : pubmed:16262791

Descripteurs français

English descriptors

Abstract

Rheb GTPase is a key player in the control of growth, cell cycle and nutrient uptake that is conserved from yeast to humans. To further our understanding of the Rheb pathway, we sought to identify hyperactivating mutations in the Schizosaccharomyces pombe Rheb, Rhb1. Hyperactive forms of Rhb1 were found to result from single amino acid changes at valine-17, serine-21, lysine-120 or asparagine-153. Expression of these mutants confers resistance to canavanine and thialysine, phenotypes which are similar to phenotypes exhibited by cells lacking the Tsc1/Tsc2 complex that negatively regulates Rhb1. The thialysine-resistant phenotype of the hyperactive Rhb1 mutants is suppressed by a second mutation in the effector domain. Purified mutant proteins exhibit dramatically decreased binding of GDP, while their GTP binding is not drastically affected. In addition, some of the mutant proteins show significantly decreased GTPase activities. Thus the hyperactivating mutations are expected to result in an increase in the GTP-bound/GDP-bound ratio of Rhb1. By using the hyperactive mutant, Rhb1(K120R), we have been able to demonstrate that Rhb1 interacts with Tor2, one of the two S. pombe TOR (Target of Rapamycin) proteins. These fission yeast results provide the first evidence for a GTP-dependent association of Rheb with Tor.

DOI: 10.1111/j.1365-2958.2005.04877.x
PubMed: 16262791


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Identification of novel single amino acid changes that result in hyperactivation of the unique GTPase, Rheb, in fission yeast.</title>
<author>
<name sortKey="Urano, Jun" sort="Urano, Jun" uniqKey="Urano J" first="Jun" last="Urano">Jun Urano</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology, Immunology and Molecular Genetics, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, University of California, Los Angeles, CA 90095-1489, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, Immunology and Molecular Genetics, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, University of California, Los Angeles, CA 90095-1489</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Comiso, Melissa J" sort="Comiso, Melissa J" uniqKey="Comiso M" first="Melissa J" last="Comiso">Melissa J. Comiso</name>
</author>
<author>
<name sortKey="Guo, Lea" sort="Guo, Lea" uniqKey="Guo L" first="Lea" last="Guo">Lea Guo</name>
</author>
<author>
<name sortKey="Aspuria, Paul Joseph" sort="Aspuria, Paul Joseph" uniqKey="Aspuria P" first="Paul-Joseph" last="Aspuria">Paul-Joseph Aspuria</name>
</author>
<author>
<name sortKey="Deniskin, Roman" sort="Deniskin, Roman" uniqKey="Deniskin R" first="Roman" last="Deniskin">Roman Deniskin</name>
</author>
<author>
<name sortKey="Tabancay, Angel P" sort="Tabancay, Angel P" uniqKey="Tabancay A" first="Angel P" last="Tabancay">Angel P. Tabancay</name>
</author>
<author>
<name sortKey="Kato Stankiewicz, Juran" sort="Kato Stankiewicz, Juran" uniqKey="Kato Stankiewicz J" first="Juran" last="Kato-Stankiewicz">Juran Kato-Stankiewicz</name>
</author>
<author>
<name sortKey="Tamanoi, Fuyuhiko" sort="Tamanoi, Fuyuhiko" uniqKey="Tamanoi F" first="Fuyuhiko" last="Tamanoi">Fuyuhiko Tamanoi</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2005">2005</date>
<idno type="RBID">pubmed:16262791</idno>
<idno type="pmid">16262791</idno>
<idno type="doi">10.1111/j.1365-2958.2005.04877.x</idno>
<idno type="wicri:Area/Main/Corpus">001812</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001812</idno>
<idno type="wicri:Area/Main/Curation">001812</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001812</idno>
<idno type="wicri:Area/Main/Exploration">001812</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Identification of novel single amino acid changes that result in hyperactivation of the unique GTPase, Rheb, in fission yeast.</title>
<author>
<name sortKey="Urano, Jun" sort="Urano, Jun" uniqKey="Urano J" first="Jun" last="Urano">Jun Urano</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology, Immunology and Molecular Genetics, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, University of California, Los Angeles, CA 90095-1489, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, Immunology and Molecular Genetics, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, University of California, Los Angeles, CA 90095-1489</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Comiso, Melissa J" sort="Comiso, Melissa J" uniqKey="Comiso M" first="Melissa J" last="Comiso">Melissa J. Comiso</name>
</author>
<author>
<name sortKey="Guo, Lea" sort="Guo, Lea" uniqKey="Guo L" first="Lea" last="Guo">Lea Guo</name>
</author>
<author>
<name sortKey="Aspuria, Paul Joseph" sort="Aspuria, Paul Joseph" uniqKey="Aspuria P" first="Paul-Joseph" last="Aspuria">Paul-Joseph Aspuria</name>
</author>
<author>
<name sortKey="Deniskin, Roman" sort="Deniskin, Roman" uniqKey="Deniskin R" first="Roman" last="Deniskin">Roman Deniskin</name>
</author>
<author>
<name sortKey="Tabancay, Angel P" sort="Tabancay, Angel P" uniqKey="Tabancay A" first="Angel P" last="Tabancay">Angel P. Tabancay</name>
</author>
<author>
<name sortKey="Kato Stankiewicz, Juran" sort="Kato Stankiewicz, Juran" uniqKey="Kato Stankiewicz J" first="Juran" last="Kato-Stankiewicz">Juran Kato-Stankiewicz</name>
</author>
<author>
<name sortKey="Tamanoi, Fuyuhiko" sort="Tamanoi, Fuyuhiko" uniqKey="Tamanoi F" first="Fuyuhiko" last="Tamanoi">Fuyuhiko Tamanoi</name>
</author>
</analytic>
<series>
<title level="j">Molecular microbiology</title>
<idno type="ISSN">0950-382X</idno>
<imprint>
<date when="2005" type="published">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Amino Acid Substitution (MeSH)</term>
<term>Antifungal Agents (pharmacology)</term>
<term>Canavanine (pharmacology)</term>
<term>Cell Cycle Proteins (metabolism)</term>
<term>Cysteine (analogs & derivatives)</term>
<term>Cysteine (pharmacology)</term>
<term>Drug Resistance, Fungal (MeSH)</term>
<term>GTP Phosphohydrolases (analysis)</term>
<term>GTP Phosphohydrolases (chemistry)</term>
<term>GTP Phosphohydrolases (genetics)</term>
<term>GTP Phosphohydrolases (isolation & purification)</term>
<term>GTP Phosphohydrolases (metabolism)</term>
<term>Guanosine Diphosphate (metabolism)</term>
<term>Guanosine Triphosphate (metabolism)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Phosphatidylinositol 3-Kinases (metabolism)</term>
<term>Protein Binding (MeSH)</term>
<term>Protein Synthesis Inhibitors (pharmacology)</term>
<term>Schizosaccharomyces (enzymology)</term>
<term>Schizosaccharomyces pombe Proteins (chemistry)</term>
<term>Schizosaccharomyces pombe Proteins (genetics)</term>
<term>Schizosaccharomyces pombe Proteins (isolation & purification)</term>
<term>Schizosaccharomyces pombe Proteins (metabolism)</term>
<term>Sequence Homology, Amino Acid (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Antifongiques (pharmacologie)</term>
<term>Canavanine (pharmacologie)</term>
<term>Cystéine (analogues et dérivés)</term>
<term>Cystéine (pharmacologie)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Guanosine diphosphate (métabolisme)</term>
<term>Guanosine triphosphate (métabolisme)</term>
<term>Inhibiteurs de la synthèse protéique (pharmacologie)</term>
<term>Liaison aux protéines (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Phosphatidylinositol 3-kinases (métabolisme)</term>
<term>Protéines de Schizosaccharomyces pombe (composition chimique)</term>
<term>Protéines de Schizosaccharomyces pombe (génétique)</term>
<term>Protéines de Schizosaccharomyces pombe (isolement et purification)</term>
<term>Protéines de Schizosaccharomyces pombe (métabolisme)</term>
<term>Protéines du cycle cellulaire (métabolisme)</term>
<term>Résistance des champignons aux médicaments (MeSH)</term>
<term>Schizosaccharomyces (enzymologie)</term>
<term>Similitude de séquences d'acides aminés (MeSH)</term>
<term>Substitution d'acide aminé (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>dGTPases (analyse)</term>
<term>dGTPases (composition chimique)</term>
<term>dGTPases (génétique)</term>
<term>dGTPases (isolement et purification)</term>
<term>dGTPases (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analogs & derivatives" xml:lang="en">
<term>Cysteine</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>GTP Phosphohydrolases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>GTP Phosphohydrolases</term>
<term>Schizosaccharomyces pombe Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>GTP Phosphohydrolases</term>
<term>Schizosaccharomyces pombe Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="isolation & purification" xml:lang="en">
<term>GTP Phosphohydrolases</term>
<term>Schizosaccharomyces pombe Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cell Cycle Proteins</term>
<term>GTP Phosphohydrolases</term>
<term>Guanosine Diphosphate</term>
<term>Guanosine Triphosphate</term>
<term>Phosphatidylinositol 3-Kinases</term>
<term>Schizosaccharomyces pombe Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Antifungal Agents</term>
<term>Canavanine</term>
<term>Cysteine</term>
<term>Protein Synthesis Inhibitors</term>
</keywords>
<keywords scheme="MESH" qualifier="analogues et dérivés" xml:lang="fr">
<term>Cystéine</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>dGTPases</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Protéines de Schizosaccharomyces pombe</term>
<term>dGTPases</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Protéines de Schizosaccharomyces pombe</term>
<term>dGTPases</term>
</keywords>
<keywords scheme="MESH" qualifier="isolement et purification" xml:lang="fr">
<term>Protéines de Schizosaccharomyces pombe</term>
<term>dGTPases</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Guanosine diphosphate</term>
<term>Guanosine triphosphate</term>
<term>Phosphatidylinositol 3-kinases</term>
<term>Protéines de Schizosaccharomyces pombe</term>
<term>Protéines du cycle cellulaire</term>
<term>dGTPases</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Antifongiques</term>
<term>Canavanine</term>
<term>Cystéine</term>
<term>Inhibiteurs de la synthèse protéique</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Amino Acid Substitution</term>
<term>Drug Resistance, Fungal</term>
<term>Molecular Sequence Data</term>
<term>Mutation</term>
<term>Protein Binding</term>
<term>Sequence Homology, Amino Acid</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Données de séquences moléculaires</term>
<term>Liaison aux protéines</term>
<term>Mutation</term>
<term>Résistance des champignons aux médicaments</term>
<term>Similitude de séquences d'acides aminés</term>
<term>Substitution d'acide aminé</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Rheb GTPase is a key player in the control of growth, cell cycle and nutrient uptake that is conserved from yeast to humans. To further our understanding of the Rheb pathway, we sought to identify hyperactivating mutations in the Schizosaccharomyces pombe Rheb, Rhb1. Hyperactive forms of Rhb1 were found to result from single amino acid changes at valine-17, serine-21, lysine-120 or asparagine-153. Expression of these mutants confers resistance to canavanine and thialysine, phenotypes which are similar to phenotypes exhibited by cells lacking the Tsc1/Tsc2 complex that negatively regulates Rhb1. The thialysine-resistant phenotype of the hyperactive Rhb1 mutants is suppressed by a second mutation in the effector domain. Purified mutant proteins exhibit dramatically decreased binding of GDP, while their GTP binding is not drastically affected. In addition, some of the mutant proteins show significantly decreased GTPase activities. Thus the hyperactivating mutations are expected to result in an increase in the GTP-bound/GDP-bound ratio of Rhb1. By using the hyperactive mutant, Rhb1(K120R), we have been able to demonstrate that Rhb1 interacts with Tor2, one of the two S. pombe TOR (Target of Rapamycin) proteins. These fission yeast results provide the first evidence for a GTP-dependent association of Rheb with Tor.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">16262791</PMID>
<DateCompleted>
<Year>2006</Year>
<Month>05</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0950-382X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>58</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2005</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Molecular microbiology</Title>
<ISOAbbreviation>Mol Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Identification of novel single amino acid changes that result in hyperactivation of the unique GTPase, Rheb, in fission yeast.</ArticleTitle>
<Pagination>
<MedlinePgn>1074-86</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Rheb GTPase is a key player in the control of growth, cell cycle and nutrient uptake that is conserved from yeast to humans. To further our understanding of the Rheb pathway, we sought to identify hyperactivating mutations in the Schizosaccharomyces pombe Rheb, Rhb1. Hyperactive forms of Rhb1 were found to result from single amino acid changes at valine-17, serine-21, lysine-120 or asparagine-153. Expression of these mutants confers resistance to canavanine and thialysine, phenotypes which are similar to phenotypes exhibited by cells lacking the Tsc1/Tsc2 complex that negatively regulates Rhb1. The thialysine-resistant phenotype of the hyperactive Rhb1 mutants is suppressed by a second mutation in the effector domain. Purified mutant proteins exhibit dramatically decreased binding of GDP, while their GTP binding is not drastically affected. In addition, some of the mutant proteins show significantly decreased GTPase activities. Thus the hyperactivating mutations are expected to result in an increase in the GTP-bound/GDP-bound ratio of Rhb1. By using the hyperactive mutant, Rhb1(K120R), we have been able to demonstrate that Rhb1 interacts with Tor2, one of the two S. pombe TOR (Target of Rapamycin) proteins. These fission yeast results provide the first evidence for a GTP-dependent association of Rheb with Tor.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Urano</LastName>
<ForeName>Jun</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, Immunology and Molecular Genetics, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, University of California, Los Angeles, CA 90095-1489, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Comiso</LastName>
<ForeName>Melissa J</ForeName>
<Initials>MJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Guo</LastName>
<ForeName>Lea</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Aspuria</LastName>
<ForeName>Paul-Joseph</ForeName>
<Initials>PJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Deniskin</LastName>
<ForeName>Roman</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tabancay</LastName>
<ForeName>Angel P</ForeName>
<Initials>AP</Initials>
<Suffix>Jr</Suffix>
</Author>
<Author ValidYN="Y">
<LastName>Kato-Stankiewicz</LastName>
<ForeName>Juran</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tamanoi</LastName>
<ForeName>Fuyuhiko</ForeName>
<Initials>F</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>CA41996</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Mol Microbiol</MedlineTA>
<NlmUniqueID>8712028</NlmUniqueID>
<ISSNLinking>0950-382X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000935">Antifungal Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018797">Cell Cycle Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011500">Protein Synthesis Inhibitors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029702">Schizosaccharomyces pombe Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>146-91-8</RegistryNumber>
<NameOfSubstance UI="D006153">Guanosine Diphosphate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>2936-69-8</RegistryNumber>
<NameOfSubstance UI="C000204">S-2-aminoethyl cysteine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3HZV514J4B</RegistryNumber>
<NameOfSubstance UI="D002172">Canavanine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>86-01-1</RegistryNumber>
<NameOfSubstance UI="D006160">Guanosine Triphosphate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.-</RegistryNumber>
<NameOfSubstance UI="D019869">Phosphatidylinositol 3-Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.137</RegistryNumber>
<NameOfSubstance UI="C513100">tor2 protein, S pombe</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.1.-</RegistryNumber>
<NameOfSubstance UI="D020558">GTP Phosphohydrolases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.1.-</RegistryNumber>
<NameOfSubstance UI="C412832">Rhb1 protein, S pombe</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>K848JZ4886</RegistryNumber>
<NameOfSubstance UI="D003545">Cysteine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019943" MajorTopicYN="Y">Amino Acid Substitution</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000935" MajorTopicYN="N">Antifungal Agents</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002172" MajorTopicYN="N">Canavanine</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018797" MajorTopicYN="N">Cell Cycle Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003545" MajorTopicYN="N">Cysteine</DescriptorName>
<QualifierName UI="Q000031" MajorTopicYN="N">analogs & derivatives</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025141" MajorTopicYN="N">Drug Resistance, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020558" MajorTopicYN="N">GTP Phosphohydrolases</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006153" MajorTopicYN="N">Guanosine Diphosphate</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006160" MajorTopicYN="N">Guanosine Triphosphate</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019869" MajorTopicYN="N">Phosphatidylinositol 3-Kinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011500" MajorTopicYN="N">Protein Synthesis Inhibitors</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012568" MajorTopicYN="N">Schizosaccharomyces</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029702" MajorTopicYN="N">Schizosaccharomyces pombe Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2005</Year>
<Month>11</Month>
<Day>3</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2006</Year>
<Month>5</Month>
<Day>4</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2005</Year>
<Month>11</Month>
<Day>3</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16262791</ArticleId>
<ArticleId IdType="pii">MMI4877</ArticleId>
<ArticleId IdType="doi">10.1111/j.1365-2958.2005.04877.x</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Aspuria, Paul Joseph" sort="Aspuria, Paul Joseph" uniqKey="Aspuria P" first="Paul-Joseph" last="Aspuria">Paul-Joseph Aspuria</name>
<name sortKey="Comiso, Melissa J" sort="Comiso, Melissa J" uniqKey="Comiso M" first="Melissa J" last="Comiso">Melissa J. Comiso</name>
<name sortKey="Deniskin, Roman" sort="Deniskin, Roman" uniqKey="Deniskin R" first="Roman" last="Deniskin">Roman Deniskin</name>
<name sortKey="Guo, Lea" sort="Guo, Lea" uniqKey="Guo L" first="Lea" last="Guo">Lea Guo</name>
<name sortKey="Kato Stankiewicz, Juran" sort="Kato Stankiewicz, Juran" uniqKey="Kato Stankiewicz J" first="Juran" last="Kato-Stankiewicz">Juran Kato-Stankiewicz</name>
<name sortKey="Tabancay, Angel P" sort="Tabancay, Angel P" uniqKey="Tabancay A" first="Angel P" last="Tabancay">Angel P. Tabancay</name>
<name sortKey="Tamanoi, Fuyuhiko" sort="Tamanoi, Fuyuhiko" uniqKey="Tamanoi F" first="Fuyuhiko" last="Tamanoi">Fuyuhiko Tamanoi</name>
</noCountry>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Urano, Jun" sort="Urano, Jun" uniqKey="Urano J" first="Jun" last="Urano">Jun Urano</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001842 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001842 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:16262791
   |texte=   Identification of novel single amino acid changes that result in hyperactivation of the unique GTPase, Rheb, in fission yeast.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:16262791" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020